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Abstract— A high-efficiency power-combining method for four-
way 5.8-GHz magnetrons based on the external injection-locking
technique is presented in this article. The method uses a non-
isolated, lossless five-port hybrid waveguide combiner for power
combining. Meanwhile, the injection-locking technology has been
applied to magnetrons for achieving coherent power combining.
The phase fluctuation of the injection-locked magnetron, without
the presence of a phase-locked loop, measured nearly ±2.5◦.
In contrast, when a phase-locked loop was introduced, the phase
fluctuation reduced significantly to approximately ±0.5◦. This
phase accuracy can fully meet the requirements of combining
experiments. Four magnetrons worked in injection-locked states
without phase-locked loop. The proposed power-combining sys-
tem is designed, measured, and analyzed. Measurement results
show that a high-power-combining efficiency of over 95% is
achieved by injection-locked magnetron without PLL, with the
best efficiency reaching up to 97.7% with phase control of the
injected signals. Experimental results reveal that the magnetron
phase-pushing effects and the ripple in high-power dc voltage
and current have a minor impact of approximately 4% on the
combining efficiency.

Index Terms— Five-port waveguide combiner, hybrid tee,
injection locking, magnetron, power combining, wireless power
transmission (WPT).

I. INTRODUCTION

POWER combining is emerging in various applica-
tions, such as wireless communication, wireless power

transmission (WPT) [1], [2], [3], space solar power stations
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(SPS) [4], [5], [6], [7], satellite communication [8], and
microwave heating [9]. The power capacity of a single CW
magnetron (MGT) is mainly limited by its resonant cavity
size. Thus, magnetrons at high frequencies, coming with
smaller resonant cavities, have lower power capacities com-
pared with low-frequency ones [10], [11]. Therefore, power
combining is widely used to achieve high power in high-
frequency applications. The basic idea of power combining
is simultaneously combining N signals into a single output or
vice versa [12]. Over the past decades, there has been increas-
ing research and application of power-combining techniques.
Power-combining approaches are mainly classified into several
categories: 1) chip-level combining [13], [14]; 2) circuit-level
combining [15]; 3) spatial combining [16], [17]; 4) hybrid
waveguide combining [18], [19], [20], [21], [22], [23]; and
5) combinations of the aforementioned techniques [24]. With
the development of large-power amplifier chips, several tech-
nologies are applied in power combining, such as serial,
cascading, impedance optimization, symmetry, and other tech-
nologies used at both the chip and circuit levels. Spatial
combining is based on active phased arrays. With the develop-
ment of WPT systems, microwave industrial heating devices,
particle accelerators, and so on, there are more and more
requirements for large-power microwave generators. Mag-
netrons are becoming better and more cost-effective choices
for those large-power microwave generators. For example,
Yang et al. [1] achieved an injection-locked 5.8-GHz mag-
netron active phased array using four independent amplitude
and phase-controlled magnetrons. Chen et al. [25] developed
a 3.5-kW 2.45-GHz microwave-transmitting system based
on horn array antennas with four primary–secondary phase-
controlled magnetrons. Hybrid waveguide combining usually
provides high power capability and is generally used in vac-
uum devices.

Magnetrons are widely used in industrial microwave heating
applications due to their low cost, high power, and effi-
ciency. However, their unstable phase and frequency negatively
affect the precise control of microwave sources in phase
array antennas or high-power-combining systems [26], [27].
Injection-locking techniques applied to magnetrons effectively
solve the instability problem of magnetrons [28], [29], [30].
Injection-locked magnetron systems have been investigated
in power-combining systems and WPT [4], [5], [6], [7].
Injection-locked magnetron power combining is typically
based on 3-dB tees or four-port magic tees in waveguide
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combining. Treado et al. [31] demonstrated high-power mag-
netrons driven by an RF-isolated low-power source, achieving
a power-combining efficiency of 92% using two long-pulse
phase-locking magnetrons combined with a 3-dB hybrid cou-
pler. Liu et al. [10] and [21] successfully combined two-
and four-way injection-locked 2.45-GHz magnetrons based on
a 3-dB waveguide divider, achieving a combining efficiency
of over 90%. Park et al. [32] performed power-combining
experiments using two 2.45-GHz identical magnetrons and
achieved an efficiency of approximately 93%.

In this work, a stable and highly efficient four-way injection-
locked 5.8-GHz power-combining experiment was conducted.
We proposed a high-efficiency power-combining method con-
sisting of four-way injection-locked magnetron systems, and
the power-combining experiment was based on a compact
five-port hybrid combiner. It achieved high combining effi-
ciencies for both low- and high-power scenarios. Only the
injected signals were used for low-power combining, and the
combining efficiency for the four-way injected signals without
injection to the magnetron was above 96%. Building upon
the well-controlled technology of injection-locked magnetrons
studied in our previous work [1], in this work, we study
the phase characteristics of the phase-locked magnetron by
improving the reducing the dc high voltage power supply
ripple, external signal injection-locked technology, closed-
loop phase locking, and so on. Our focus revolves around
enhancing various aspects, such as mitigating the ripple in
the dc high voltage power supply, implementing external
signal injection-locked technology, and employing closed-loop
phase locking, among other strategies. Upon activation of the
four-way magnetrons with the combining of injected signals,
the observed efficiency in combining magnetron output power
surpassed an impressive 93%. By adjusting the phase shifter,
the high-power-combining efficiency was over 95%, with the
best efficiency reaching 97.7%.

II. COMBINING EFFICIENCY CHARACTERISTICS

Consider a power combiner that works well with an
n-way linear independent signal source network, where only
one output of the combiner is the final combined power output.
The combining efficiency ηcom of the n-way signals is defined
as the ratio between the output power Pcom of the combiner
and the arithmetic sum of the powers Pav of the n individual
signal sources [33], [34], [35], [36] and given by the following
equation:

ηcom =
Pcom∑n

i=1 Pav,i
× 100%. (1)

For a selected combiner, the maximum efficiency ηmax is its
intrinsic merit [33], [34]. The maximum efficiency is guaran-
teed when the input signal amplitudes and phases are identical,
aligning with the intrinsic property of the combiner [33], [34].
However, amplitude and phase differences will exist between
the ports when the power and phase of each port’s signal are
not identical. In this case, if the power and phase available
from each of the individual signal sources being combined
connected to the i th port of the combiner are denoted by Pi

and θi , respectively, the combining output power Pcom is the
vectorial sum of the arithmetic sums of the powers [34]

Pcom =ηmax
1
n

( n∑
i=1

√
Pi cos θi

)2

+

(
n∑

i=1

√
Pi sin θi

)2
. (2)

Then, the combining efficiency from (1) can be determined as
follows [34]:

ηcom =ηmax

[(∑n
i=1

√
Pi cos θi

)2
+
(∑n

i=1
√

Pi sin θi
)2
]

n
∑n

i=1 Pav,i
×100%

≤ 1(always). (3)

The combining efficiency reaches the maximum value
affected by two main factors [33]. One is the characteristics
of the combiner itself, including the matching and isolation,
symmetry, power dissipation, bandwidth, and power capacity.
Another factor is the characteristics of the signals to be
combined, including the flexibility in adjusting the amplitudes
and phases of the signals. In addition, in practical applications,
it is necessary to reduce the power losses occurring in the
combining. For a power-combining system based on injection-
locked magnetrons, the selection of the combiner is crucial.
In selecting the appropriate power-combining component,
three primary factors are carefully weighed.

1) Power Capacity: When dealing with high-power vacuum
devices, the predominant choice is waveguide. In partic-
ular, magnetrons, which possess substantial power, make
waveguide devices the ideal selection.

2) Symmetry and Low Power Dissipation: Maximiz-
ing efficiency hinges on analyzing combiner losses
and reflections. Therefore, the chosen combiner must
exhibit symmetry and uniform power distribution, which
leads to possible maximum power-combining efficiency.
In addition, using low-loss devices is highly advisable
to minimize power dissipation.

3) Cascade Length: Power-combining efficiency experi-
ences a significant decline since power loss increases
exponentially with transmission line length. Conse-
quently, this imposes a practical constraint on the
viability of serial and corporate power combiners, allow-
ing them to be employed efficiently only within a limited
number of stages [12].

III. QUASI-SYMMETRIC HYBRID COMBINER

Within waveguide combiners, two-way combining is com-
monly achieved using E-plane tee, H -plane tee, or magic-tee
configurations [9], while four-way combining requires multi-
ple tees to cascade [21]. A multiple-port compact combiner
reduces the cascade levels, volume, and weight of the whole
system. A five-port combiner was applied to achieve four-way
magnetron output power in the experiment. The design concept
of the quasi-symmetric combiner was derived from a two-way
combiner consisting of a 3-dB E-plane tee and a 3-dB
H -plane tee. Fig. 1 shows the quasi-symmetric structure of
the combiner. A rectangular waveguide with ports 2–5 was
assembled with a 45◦ corner. It should be noted that all
diagonal elements of the scattering matrix (S-matrix) of an
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Fig. 1. Model of the four-way combiner.

Fig. 2. Electronic field of the four-way combiner.

E- or H -plane T-junction cannot be simultaneously zero as
the tee junction cannot be ideally matched to all other arms
simultaneously [37], [38]. The S-matrix of an E-plane tee can
be derived considering port 3 as matched. Ports 2 and 3 serve
as the input ports of the H-T combiner, while ports 4 and 5 act
as the input ports of the E-T combiner. Port 1 is the output
port.

Port 1 is the power-combining output port, and the elec-
tronic field configuration of the combiner is shown in Fig. 2.
To achieve a quasi-symmetric 3-dB H -plane tee, ports 2 and
3 were combined with port 1 [38]. Ports 4 and 5 were
assembled with port 1 to achieve the 3-dB E-plane tee [38].
The S-matrix of ports 1–3 and the S-matrix of ports 1, 4, and
5 can be represented as follows:
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If we assume that the E- and H -plane T-junction of the
combiner is symmetric and lossless, respectively, and port 1
has perfect impedance matching, the S-matrix of the five-port

Fig. 3. Simulated and measured S-parameters between port 1 and ports 2–5.

combiner [39] is

S =


0 S12 S12 S14 S12

S12 S22 S23 S24 S25
S12 S23 S22 S34 S35
S14 S24 S34 S44 S45
S12 S25 S35 S45 S44

. (5)

The maximum efficiency of the combiner is an intrinsic
property. To ensure the maximum efficiency of the combiner,
it is essential to match the amplitude and phase characteristics
of the signals to be combined. The five-port power combiner’s
scattering parameters (S-parameters) were measured and sim-
ulated, as shown in Fig. 3.

The amplitude and phase differences of the input port and
the output power of the five-port combiner were specially
designed. To combine the output of the same four sources
and to achieve the maximum power-combining efficiency, it is
essential to ensure that the phase and amplitude characteristics
between each port are suitable. The coupling of the waveguide
combiner can be challenging due to the junctions of the waveg-
uide tees, which are often poorly matched devices. Unequal
power distribution can impact the coupling between each
input port and subsequently affect the combining efficiency.
Therefore, the intrinsic amplitude and phase relationships
between port 1 and the other ports must satisfy the following
conditions:

|S12| = |S13| = |S15| = |S14| = 1/2. (6)
ϕ12 = ϕ13 = ϕ15, ϕ14 = 180◦

− ϕ15. (7)

The measured and simulated S-parameters are shown in
Figs. 4 and 5. When port 1 of the power combiner is well
matched, both the simulated and experimental return losses
(|S11|) are better than −20 dB. However, the amplitude sat-
isfies (6) near 5.8 GHz. The measured phase characteristics
of S21, S31, S41, and S51 are shown in Fig. 5. The phase
characteristics fully satisfied (6) and (7). The flexibility in
adjusting the amplitudes and phases of the signals to be com-
bined is determined by the well-controlled injection-locked
magnetrons, which were studied in our previous work [1]. The
amplitude and phase alignment between the magnetron output
ports and the combiner input port is essential for achieving
the best power-combining efficiency. The microwave’s phase
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Fig. 4. Measured S-parameter characteristics among ports 2–5.

Fig. 5. Measured phase characteristics between port 1 and ports 2–5.

Fig. 6. Phase and amplitude of microwave at each input port. (a) Ideal
power-combining state. (b) Practical power-combining state.

φ and amplitude Vi at each port of the power combiner are
shown in Fig. 6. The microwave at port 4 is out of phase
with ports 2–5 since port 4 is in the H -plane, unlike the other
input ports in the E-plane. Fig. 6(a) shows the ideal state for
maximum power-combing efficiency. The microwave at each
input port 2–4 has the same phase and amplitude, except port 4
that is out of phase. Fig. 6(b) shows a practical state. The
microwave at each input port has various amplitudes, and each
input port’s phase is not identical. Then, the power-combining
efficiency decreases. The S-parameter of the combiner deter-
mines the phase relationship. The power and phase of the

Fig. 7. Power-combining efficiency with power and phase deviations.

input signals are controlled by the individual sources, and the
coupling of the waveguide combiner, as well as the matching
between the individual sources and the combiner, affects the
actual input power into the combiner. If all the matching
and connection problems of the individual sources and the
combiner have fulfilled the requirements, the combining effi-
ciency is equal to the maximum efficiency of the combiner.
However, it is challenging to maintain identical power and
identical phases in the case of multiple magnetrons. Therefore,
a specific difference in power or phase is acceptable and can
still yield satisfactory results. In practical applications, the
amplitude and phase characteristics of the signals are another
factor in combining efficiency. Instead, there are three other
common scenarios: 1) unequal power and unequal phases;
2) identical power and unequal phases; and 3) unequal power
and identical phase [34]. For an n-way power-combining
system, with the available reference power and phase with
standard power deviation 1G (in dB) and phase deviation 8(in
degrees), the efficiency degradation should be simplified as a
function [34], [40]

ηcom =
4 × 101G/10 cos2 8

(1 + 101G/10)2 . (8)

Fig. 7 shows the contours of the minimum combining
efficiency of the power and phase deviations. The larger the
standard power and phase deviations, the lower the power-
combining efficiency. If the power-combining efficiency is
greater than 95%, the phase variation is lower than 12◦, and
the power variation allows some tradeoffs up to approximately
3 dB. Therefore, the phase variation is essential in the com-
bining experiment.

IV. PHASE-LOCKED MAGNETRON INVESTIGATION

A 5.8-GHz phase-locked magnetron system was metic-
ulously designed to facilitate comprehensive investigations
into phase-locking dynamics, as shown in Fig. 8. To opti-
mize phase stability in the phase-locked magnetron, various
strategies were meticulously considered. These included the
reduction of dc high voltage power supply ripple, the inte-
gration of external signal injection-locked technology, and
the implementation of closed-loop phase locking, among
other methodologies [1]. The experimental setup involved
the injection of an external signal, generated by a signal
generator (SG) and manipulated through a phase shifter and
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Fig. 8. Phase measurement of the phase-locked magnetron.

Fig. 9. Phase measurement of the magnetron’s dc power supply.

power amplifier, ultimately directed into the magnetron via a
circulator. The accompanying diagram delineates the system’s
conditions both before (depicted by the blue line, labeled
“a”) and after the phase-locked loop (PLL) circuit (depicted
by the green line, labeled “b”) was engaged together. The
assessment of the system’s performance involved measuring
the frequency spectrum and power output, accomplished using
a spectrum analyzer (Agilent N9020A) and a power meter
(Agilent N1914A). The ripple of the dc high-power supply and
anode current was subjected to measurement. The magnetron
system operated with a high dc voltage of 4480 V, while the
specified filament voltage and current were specified as 3.3 V
and 7.4 A, respectively, by ac 3.35 V. Notably, the peak-to-
peak fluctuation of the dc high-power supply and anode current
ripple was found to be below 2.9 V and 0.04 A, as shown in
Fig. 9. Fig. 10 presents the frequency spectra of the magnetron
under free-running and phase-locked conditions. In addition,
Fig. 11 shows the phase noise characteristics of both the
injected signal and the phase-locked magnetron output. These
results provide a comprehensive understanding of the system’s
performance and stability.

A reference signal sourced from the SG is divided by
divider 1 and utilized in phase difference measurements con-
ducted by a vector network analyzer (Agilent N5242A). The
phase difference between the reference signal and signals at
positions 1–5 was measured. As shown in Fig. 12, the phase

Fig. 10. Spectrum measurement of magnetron before and after phase-locked.

Fig. 11. Phase noise of the phase-locked magnetron.

fluctuation between the SG output via the line connected
with a phase shifter (position 2 in Fig. 8) and the reference
signal was approximately ±0.2◦ as shown with the green
line in Fig. 12. The phase fluctuation was approximately
±0.4◦ (as shown with the blue line in Fig. 12) between the
signal from divider 1 amplified through a power amplifier
connected to the injecting port (position 3 in Fig. 8), The
phase fluctuation was approximately ±2.5◦ as shown with the
red line in Fig. 12 between the injection-locked magnetron
(position 4 in Fig. 8) and the reference signal. It is worth
noting that these observed phase variations meet the specified
requirements, particularly if the power-combining efficiency
exceeds 95%. These data support the conclusion that the phase
stability achieved is sufficient for phase variation criteria of the
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Fig. 12. Phase measurement of the phase-locked magnetron.

combining experiment. For applications demanding superior
phase characteristic, the introduction of a PLL is recommended
to achieve a closed-loop phase-locked magnetron system, Prior
to the operation of the PLL circuit, an external signal from
the signal generator, manipulated through a phase shifter and
amplifier, was injected into the magnetron via a circulator,
denoted by blue blocks and route a in Fig. 8. A closed loop
with a PLL was implemented, following route b, marked
with green blocks in Fig. 8. The magnetron’s output was fed
back into the PLL using a mixer before entering the phase
shifter. Subsequently, the phase difference between magnetron
output (position 5 in Fig. 8) and the reference signal was
measured, and the results are nearly ±0.5◦, as shown in Fig. 12
with the black line. In subsequent combination experiments,
an injection-locked magnetron without a PLL was employed
to streamline system complexity and achieve high combining
efficiency.

V. EXPERIMENT AND DISCUSSION OF RESULTS

A. Experiment System

The block diagram of the power-combining system,
as shown in Fig. 13, illustrates the system’s configuration.
An external signal is divided by a four-way power divider,
and each division is connected to a respective phase shifter
(designated as ϕ). Each divided signal is then amplified by

TABLE I
POWER COMBINING OF THE INJECTED SIGNALS UNDER THE

IDENTICAL PHASE CONDITION

a power amplifier (R&K CA5800BW50-4040R RF power
amplifier) and directly injected into each magnetron through
a circular waveguide. The injected signal has a lower power
level compared to the magnetron output, making phase control
easier. The phase shifter adjusts the phase of the injected signal
to align with the magnetron output signal. The magnetrons
are numbered from 2 to 5, corresponding to the number
of the combiner ports. The hardware of the injection-locked
magnetron subsystem is shown in Fig. 14. In the experiment,
four commercial magnetrons (Panasonic M5802) were used.
The high dc voltage of the magnetrons was 4480 V, and
the filament voltage and current were specified as 3.3 V and
7.4 A, respectively. Each magnetron was powered by a high dc
voltage and a filament current. The microwave output of each
magnetron was detected by a power meter (Agilent E4419B
and Agilent N1914A) through a circular directional coupler
at each side. The detected signals were then connected to
the five-port waveguide combiner. The four-way magnetron
outputs were combined using the waveguide combiner. The
combined output was measured using a power meter (HP
EPM-442A) and a spectrum analyzer (Agilent E4440A) to
obtain the combined power and spectrum. Based on the above
schematic, the four-way 5.8-GHz continuous-wave magnetron
microwave power-combining system was constructed, and a
photograph of the system is shown in Fig. 15.

B. External Signal Power Combining

Table I presents the experimental results of the combined
injected signals under the identical in-phase condition. The
signals input to ports 2–5 are from the injection-locked sub-
system with all the magnetrons turned off. The maximum
efficiency is achieved and recorded by adjusting the phase
shifter of each injected signal in Case 1. From Case 2 to
6 with power level increased step by step but keeping the
phase shifter setting in Case 1, the maximum combining
efficiency is recorded. As the power of the injected signals
is increased through adjustment of the signal generator, the
combining efficiency slightly fluctuates and remains above
96%. It should be noted that the phase between the input
signals and the combiner’s inherent characteristics needs to be
coordinated during the measurement process. Table II presents
the experimental results obtained using various power levels
of injected microwave with the magnetrons turned off as well.
We tuned the phase shifters in each case to receive and record
the maximum power-combining efficiency. As the power of
the injected signal increases, the phase shifters are adjusted
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Fig. 13. Diagram of the four-way injection-locked magnetron power-combining system.

Fig. 14. Parts of the injection-locked magnetron subsystem. 1—port for the
injected signal, 2—port connected to the magnetron, 3—port for connecting
the power meter, 4—port connected to the combiner, 5 and 6—circulars,
7—directional coupler, and 8—dummy load.

to obtain the maximum output power at port 1 of the com-
biner, thereby achieving the best efficiency in each case. The
overall efficiency is above 97%. The experimental system can
maintain a stable and high combining efficiency by comparing
the two sets of data and the measurement processes. The
rated power of the power amplifier was 10 W. To ensure the
injection-locked state while increasing the magnetron output,
some of the injected signals are near the maximum value of

TABLE II
POWER COMBINING OF THE INJECTED SIGNALS UNDER

THE BEST PHASE CONDITION

the power amplifier. For example, in Case 6, the data show
that the power of amplifiers 2 and 4 has reached saturation.

C. Magnetron Output Power Combining

When the system maintains the combined state of the
injected signals at maximum efficiency, the magnetrons are
turned on one by one. Table III presents the power combining
of the magnetron outputs under the same phase condition.
Table III shows the experimental results obtained using various
power levels of injected microwave under identical phase
conditions. We tuned the phase shifters in Case 1 to receive
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Fig. 15. Photographs of the combining experiment. 1—five-port com-
biner, 2−5—parts of injection-locked magnetron subsystem, 6−9—power
amplifiers, 10−12—power meters, 13—phase shifter, 14—50-dB directional
coupler b, and 15—50-dB directional coupler a.

Fig. 16. Spectrum of the four-way magnetron power-combining signal.

and record the maximum power-combining efficiency. The
maximum power-combining efficiency of each case has been
recorded. The filament currents must be adjusted to zero
to reduce the noise of the magnetron output after the four
magnetrons work normally, which is more conducive to the
subsequent injection-locking process. The injection-locking
status works well, as indicated by the locking spectra of the
four-way magnetron output shown in Fig. 16. In Cases 2–6
of Table III, the phase shifter was not adjusted as the mag-
netron output power increased. The power of the magnetrons
was increased by adjusting the dc high-power anode voltage

TABLE III
POWER COMBINING OF THE MAGNETRON OUTPUTS

UNDER IDENTICAL PHASE CONDITION

TABLE IV
POWER COMBINING OF MAGNETRON OUTPUTS UNDER

THE BEST PHASE CONDITION

and current. The four combined magnetrons in this technol-
ogy used a nonisolated waveguide combiner, which reduces
the energy loss within the combiner. Simultaneously, each
magnetron maintains a stable injection-locked state with a
synchronized and stable phase, resulting in a high combin-
ing efficiency. As shown in Table III, the power-combining
efficiency is above 93%, which is slightly lower than the
results shown in Table I, indicating that the impact of the
injection-locking phase shift on the combining efficiency is
approximately 4%. Tables III and IV demonstrate that the
process of injection locking the magnetrons affects the output
power. The injection-locked magnetrons exhibited a phase-
pushing effect, as observed in the results, and it is also
influenced by the ripples in dc high-power anode voltage
and current. In Table IV, the combining state of the injected
signals is maintained, and we measured the power combining
of the magnetrons under the respective best phase conditions.
In each case, all four magnetrons achieved injection locking.
It is important to note that one magnetron may lose an
injection-locked state at lower output power levels even with
a large injected signal. However, by increasing the output
power of the magnetron or reducing the oscillation noise, the
magnetron can be brought into a stable injection-locked state.
The phase shifters were adjusted accordingly after increasing
the magnetron output power each time. The results are shown
in Table IV, which demonstrates the maximum combining effi-
ciency of the four-way magnetrons achieved in the experiment.
The combining efficiency is over 95%, and the best efficiency
is up to 97.7%.

VI. CONCLUSION

In the four-way injection-locked 5.8-GHz power-combining
system, a compact, nonisolated, low-loss hybrid waveguide
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combiner with five ports was used, resulting in a high combin-
ing efficiency. The phase characteristics of the injection-locked
magnetron were thoroughly investigated. The phase fluc-
tuations observed in the injection-locked magnetron were
approximately ±2.5◦ in the absence of a phase-locked loop
and were significantly reduced to ±0.5◦ with the incor-
poration of a phase-locked loop. This high efficiency was
achieved through the combination of injection-locked mag-
netrons. When the signals were injected and the magnetrons
were in the injection-locked state, coherent power combin-
ing was successfully accomplished with and without phase
adjustment. Adjusting the phase shifter achieved a high-power-
combining efficiency of over 95%, with the best efficiency
reaching up to 97.7%. The magnetron phase-pushing effect,
as well as the ripple in dc high-power voltage and current,
has an impact of approximately 4% on the power-combining
efficiency.
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